Dek-D.com ใช้คุกกี้เพื่อพัฒนาประสบการณ์ของ
ผู้ใช้ให้ดียิ่งขึ้น เรียนรู้เพิ่มเติมที่นี่
ยอมรับ

ทฤษฎีบทมูลฐานของแคลคูลัส^-^

ตั้งกระทู้ใหม่
ตั้งกระทู้ใหม่

ทฤษฎีบทมูลฐานของแคลคูลัส กล่าวว่าอนุพันธ์ และปริพันธ์ ซึ่งเป็นการดำเนินการหลักในแคลคูลัสนั้นผกผันกัน ซึ่งหมายความว่าถ้านำฟังก์ชันต่อเนื่องใดๆมาหาปริพันธ์ แล้วนำมาหาอนุพันธ์ เราจะได้ฟังก์ชันเดิม ทฤษฎีบทนี้เหมือนว่าเป็นหัวใจสำคัญของแคลคูลัสที่นับได้ว่าเป็นทฤษฎีบทมูลฐานของทั้งสาขานี้ ผลต่อเนื่องที่สำคัญของทฤษฎีบทนี้ ซึ่งบางทีเรียกว่าทฤษฎีบทมูลฐานของแคลคูลัสบทที่สองนั้นทำให้เราสามารถคำนวณหาปริพันธ์โดยใช้ปฏิยานุพันธ์ ของฟังก์ชัน

โดยทั่วไปแล้ว ทฤษฎีบทนี้กล่าวว่าผลรวมของการเปลี่ยนแปลงที่น้อยยิ่ง ในปริมาณในช่วงเวลา (หรือปริมาณอื่นๆ) นั้นเข้าใกล้การเปลี่ยนแปลงรวม

เพื่อให้เห็นด้วยกับข้อความนี้ เราจะเริ่มด้วยตัวอย่างนี้ สมมติว่าอนุภาคเดินทางบนเส้นตรงโดยมีตำแหน่งจากฟังก์ชัน x(t) เมื่อ t คือเวลา อนุพันธ์ของฟังก์ชันนี้เท่ากับความเปลี่ยนแปลงที่น้อยมากๆของ x ต่อช่วงเวลาที่น้อยมากๆ (แน่นอนว่าอนุพันธ์ต้องขึ้นอยู่กับเวลา) เรานิยามความเปลี่ยนแปลงของระยะทางต่อช่วงเวลาว่าเป็นอัตราเร็ว v ของอนุภาค ด้วยสัญกรณ์ของไลบ์นิซ

เมื่อจัดรูปสมการใหม่จะได้

จากตรรกะข้างต้น ความเปลี่ยนแปลงใน x ที่เรียกว่า Δx คือผลรวมของการเปลี่ยนแปลงที่น้อยมากๆ dx มันยังเท่ากับผลรวมของผลคูณระหว่างอนุพันธ์และเวลาที่น้อยมากๆ ผลรวมอนันต์นี้คือปริพันธ์ ดังนั้นการหาปริพันธ์ทำให้เราสามารถคืนฟังก์ชันต้นของมันจากอนุพันธ์ เช่นเดียวกัน การดำเนินการนี้ผกผันกัน หมายความว่าเราสามารถหาอนุพันธ์ของผลการหาปริพันธ์ ซึ่งจะได้ฟังก์ชันอัตราเร็วคืนมาได้

[แก้] เนื้อหาของทฤษฎีบท

ทฤษฎีบทนี้ว่าไว้ว่า

ให้ f เป็นฟังก์ชันต่อเนื่องบนช่วง [a, b] ถ้า F เป็นฟังก์ชันที่นิยามสำหรับ x ที่อยู่ใน [a, b] ว่า

แล้ว

สำหรับทุก x ที่อยู่ใน [a, b]

ให้ f เป็นฟังก์ชันต่อเนื่องบนช่วง [a, b] ถ้า F เป็นฟังก์ชันที่

สำหรับทุก x ที่อยู่ใน [a, b]

แล้ว

[แก้] ผลที่ตามมา

ให้ f เป็นฟังก์ชันที่มีความต่อเนื่องบนช่วง [a, b]. ถ้า F เป็นฟังก์ชันที่

สำหรับทุก x ที่อยู่ใน [a, b]

แล้ว

และ

[แก้] บทพิสูจน์

[แก้] ส่วนที่ 1

กำหนดให้

ให้ x1 และ x1 + Δx อยู่ในช่วง [a, b] จะได้

และ

นำทั้งสองสมการมาลบกันได้

เราสามารถแสดงได้ว่า

(ผลรวมพื้นที่ของบริเวณที่อยู่ติดกัน จะเท่ากับ พื้นที่ของบริเวณทั้งสองรวมกัน)

ย้ายข้างสมการได้

นำไปแทนค่าใน (1) จะได้

ตามทฤษฎีบทค่าเฉลี่ยสำหรับการอินทิเกรต จะมี c อยู่ในช่วง [x1, x1 + Δx] ที่ทำให้

แทนค่าลงใน (2) ได้

หารทั้งสองข้างด้วย Δx จะได้

สังเกตว่าสมการข้างซ้าย คือ อัตราส่วนเชิงผลต่างของนิวตัน (Newton's difference quotient) ของ F ที่ x1

ใส่ลิมิต Δx → 0 ทั้งสองข้างของสมการ

สมการข้างซ้ายจะเป็นอนุพันธ์ของ F ที่ x1

เพื่อหาลิมิตของสมการข้างขวา เราจะใช้ทฤษฎีบท squeeze เพราะว่า c อยู่ในช่วง [x1, x1 + Δx] ดังนั้น x1cx1 + Δx

จาก และ

ตามทฤษฎีบท squeeze จะได้ว่า

แทนค่าลงใน (3) จะได้

ฟังก์ชัน f มีความต่อเนื่องที่ c ดังนั้น เราสามารถนำลิมิตแทนในฟังก์ชันได้ ดังนั้น

จบการพิสูจน์

(Leithold et al, 1996)

[แก้] ส่วนที่ 2

ต่อไปนี้คือบทพิสูจน์ลิมิตโดย ผลรวมของรีมันน์-ดาบูต์

ภาพแสดงแนวคิดของ ผลรวมรีมันน์-ดาบูต์ ซึ่งใช้ในการประมาณพื้นที่ภายใต้กราฟใด ๆ ด้วยกราฟแท่งจำนวนมาก
ภาพแสดงแนวคิดของ ผลรวมรีมันน์-ดาบูต์ ซึ่งใช้ในการประมาณพื้นที่ภายใต้กราฟใด ๆ ด้วยกราฟแท่งจำนวนมาก

ให้ f เป็นฟังก์ชันที่มีความต่อเนื่องบนช่วง [a, b] และ F เป็นปฏิยานุพันธ์ของ f พิจารณานิพจน์ต่อไปนี้

ให้ จะได้

แล้วบวกและลบด้วยจำนวนเดียวกัน จะได้

เขียนใหม่เป็น

เราจะใช้ทฤษฎีบทค่าเฉลี่ย ซึ่งกล่าวว่า

ให้ f เป็นฟังก์ชันที่มีความต่อเนื่องบนช่วง [a, b] และมีอนุพันธ์บนช่วง (a, b) แล้ว จะมี c อยู่ใน (a, b) ที่ทำให้

และจะได้

ฟังก์ชัน F เป็นฟังก์ชันที่หาอนุพันธ์ได้ในช่วง [a, b] ดังนั้น มันจะหาอนุพันธ์และมีความต่อเนื่องบนแต่ละช่วง xi-1 ได้ ตามทฤษฎีบทค่าเฉลี่ย จะได้

แทนค่าลงใน (1) จะได้

จาก และ xixi − 1 สามารถเขียนในรูป Δx ของผลแบ่งกั้น i

สังเกตว่าเรากำลังอธิบายพื้นที่ของสี่เหลี่ยมผืนผ้า โดยมีความกว้างคูณความสูง และเราก็บวกพื้นที่เหล่านั้นเข้าด้วยกัน จากทฤษฎีบทค่าเฉลี่ย สี่เหลี่ยมผืนผ้าแต่ละรูปอธิบายค่าประมาณของส่วนของเส้นโค้ง สังเกตอีกว่า Δxi ไม่จำเป็นต้องเหมือนกันในทุกๆค่าของ i หรือหมายความว่าความกว้างของสี่เหลี่ยมนั้นไม่จำเป็นต้องเท่ากัน สิ่งที่เราต้องทำคือประมาณเส้นโค้งด้วยจำนวนสี่เหลี่ยม n รูป เมื่อขนาดของส่วนต่างๆเล็กลง และ n มีค่ามากขึ้น ทำให้เกิดส่วนต่างๆมากขึ้น เพื่อครอบคลุมพื้นที่ เราจะยิ่งเข้าใกล้พื้นที่จริงๆของเส้นโค้ง

โดยการหาลิมิตของนิพจน์นี้เป็นเมื่อค่าเฉลี่ยของส่วนต่างๆนี้ เข้าใกล้ศูนย์ เราจะได้ ปริพันธ์แบบรีมันน์ นั่นคือ เราหาลิมิตเมื่อขนาดส่วนที่ใหญ่ที่สุดเข้าใกล้ศูนย์ จะได้ส่วนอื่นๆมีขนาดเล็กลง และจำนวนส่วนเข้าใกล้อนันต์

ดังนั้น เราจะใส่ลิมิตไปทั้งสองข้างของสมการ (2) จะได้

ทั้ง F(b) และ F(a) ต่างก็ไม่ขึ้นกับ ||Δ|| ดังนั้น ลิมิตของข้างซ้ายจึงเท่ากับ F(b) - F(a)

และนิพจน์ทางขวาของสมการ หมายถึงอินทิกรัลของ f จาก a ไป b ดังนั้น เราจะได้

จบการพิสูจน์

[แก้] ตัวอย่าง

ตัวอย่างเช่น ถ้าคุณต้องการคำนวณหา

ให้ f(x) = x2 เราจะได้ เป็นปฏิยานุพันธ์ ดังนั้น

ถ้าเราต้องการหา

จะได้

[แก้] นัยทั่วไป

เราไม่จำเป็นต้องให้ f ต่อเนื่องตลอดทั้งช่วง ดังนั้นส่วนที่ 1 ของทฤษฎีบทจะกล่าวว่า ถ้า f เป็นฟังก์ชันที่สามารถหาปริพันธ์เลอเบกบนช่วง [a,b] และ x0 เป็นจำนวนในช่วง [a,b] ซึ่ง f ต่อเนื่องที่ x0 จะได้

สามารถหาอนุพันธ์ได้สำหรับ x = x0 และ F(x0) = f(x0) เราสามารถคลายเงื่อนไขของ f เพียงแค่ให้สามารถหาปริพันธ์ได้ในตำแหน่งนั้น ในกรณีนั้น เราสามารถสรุปได้ว่าฟังก์ชัน F นั่นสามารถหาอนุพันธ์ได้เกือบทุกที่ และ F'(x) = f(x) จะเกือบทุกที่ บางทีเราเรียกทฤษฎีนี้ว่า ทฤษฎีบทอนุพันธ์ของเลอเบก

ส่วนที่ 2ของทฤษฎีบทนี้เป็นจริงสำหรับทุกฟังก์ชัน f ที่สามารถหาปริพันธ์เลอเบกได้ และมีปฏิยานุพันธ์ F (ไม่ใช่ทุกฟังก์ชันที่หาอนุพันธ์ได้)

ส่วนของทฤษฎีบทของเทย์เลอร์ซึ่งกล่าวถึงพจน์ที่เกิดข้อผิดพลาดเป็นปริพันธ์สามารถมองได้เป็นนัยทั่วไปของทฤษฎีบทมูลฐานของแคลคูลัส

มีทฤษฎีบทหนึ่งสำหรับฟังก์ชันเชิงซ้อน: ให้ U เป็นเซตเปิดใน และ เป็นฟังก์ชันที่มี ปริพันธ์โฮโลมอร์ฟ F ใน U ดังนั้นสำหรับเส้นโค้ง ปริพันธ์เส้นโค้งจะคำนวณได้จาก

ทฤษฎีบทมูลฐานของแคลคูลัสสามารถวางนัยทั่วไปให้กับ ปริพันธ์เส้นโค้งและพื้นผิวในมิติที่สูงกว่าและบนแมนิโฟลด์ได้

แสดงความคิดเห็น

>

4 ความคิดเห็น

ออออ 31 พ.ค. 51 เวลา 21:19 น. 1

เอามาจากWikipedia ทำไมเรอะ
ให้creditหน่อยมั้ย

Stewart, J. (2003). Fundamental Theorem of Calculus. In Integrals. In Calculus: early transcendentals. Belmont, California: Thomson/Brooks/Cole.
Larson, Ron, Bruce H. Edwards, David E. Heyd. Calculus of a single variable. 7th ed. Boston: Houghton Mifflin Company, 2002.
Leithold, L. (1996). The calculus 7 of a single variable. 6th ed. New York: HarperCollins College Publishers

0